Latest Updates

M5.1 Earthquake hits Greenland Sea

An earthquake with a magnitude of 5.1 on the Richter scale hit the Greenland Sea on April 26, 2014, at 03:55:33 UTC at a depth of 10.00 km (6.21 mi). The epicenter of the earthquake is located right on the faultline that crosses the Arctic Ocean, at 73.479°N 7.974°E, some 567km (352mi) SSW of Longyearbyen, Svalbard.

[ click on image to enlarge ]
This follows four further recent earthquakes close to Svalbard or on the faultline north of Greenland, as indicated on above map. All these earthquakes struck at a depth of 10.00 km (6.21 mi).

Some of these earthquakes have also been discussed in earlier posts:
M4.6 - North of Franz Josef Land, 2014-04-13 02:12:19 UTC, also discussed in this post
M4.2 - North of Franz Josef Land, 2014-04-04 07:01:30 UTC
M4.4 - 262km NE of Nord, Greenland, 2014-04-22 10:30:23 UTC, also discussed in this post
M4.3 - 148km SSE of Longyearbyen, Svalbard, 2014-04-24 08:33:06 UTC
M5.1 - Greenland Sea, 2014-04-26 03:55:33 UTC
M4.5 - Gakkel Ridge, 2014-03-06 11:17.17.0 UTC, also discussed in this post

There have been a large number of earthquakes around Greenland since early 2014, as illustrated by the image below. This could be an indication of isostatic rebound, as also discussed in this earlier post.

[ click on image to enlarge ]

As melting of the Greenland Ice Sheet speeds up, isostatic rebound could cause earthquakes around Greenland to become stronger and occur more frequently. Earthquakes in this region are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.




Related

- M4.4 Earthquake hits Arctic Ocean north of Greenland

- M4.5 Earthquake hits Arctic Ocean
http://arctic-news.blogspot.com/2014/04/m45-earthquake-hits-arctic-ocean.html

- Earthquakes in the Arctic Ocean
http://arctic-news.blogspot.com/2014/04/earthquakes-in-the-arctic-ocean.html

- Methane, Faults and Sea Ice
http://arctic-news.blogspot.com/2013/11/methane-faults-and-sea-ice.html

- Norwegian Sea hit by 4.6M Earthquake
http://arctic-news.blogspot.com/2013/11/norwegian-sea-hit-by-46m-earthquake.html

- Greenland Sea hit by M5.3 Earthquake
http://arctic-news.blogspot.com/2013/10/greenland-sea-hit-by-m53-earthquake.html

- Earthquake hits waters off Japan
http://arctic-news.blogspot.com/2013/10/earthquake-hits-waters-off-japan.html

- Earthquake hits Laptev Sea
http://arctic-news.blogspot.com/2013/09/earthquake-hits-laptev-sea.html

- Methane Release caused by Earthquakes
http://arctic-news.blogspot.com/2013/09/methane-release-caused-by-earthquakes.html

- Earthquake M6.7 hits Sea of Okhotsk
http://methane-hydrates.blogspot.com/2013/10/earthquake-m67-hits-sea-of-okhotsk.html

- Sea of Okhotsk
http://methane-hydrates.blogspot.com/2013/06/sea-of-okhotsk.html

- Seismic activity
http://arctic-news.blogspot.com/p/seismic-activity.html

- Climate Plan
http://climateplan.blogspot.com




M4.4 Earthquake hits Arctic Ocean north of Greenland

An earthquake with a magnitude of 4.4 on the Richter scale hit the Arctic Ocean north of Greenland on April 22, 2014, at 10:30:23 UTC at a depth of 10.00 km (6.2 mi).

[ click on image to enlarge ]
The epicenter of the quake is located right on the faultline that crosses the Arctic Ocean, at 83.328°N 4.568°W, 262km (163mi) NE of Nord, Greenland.

The earthquake follows another earthquake that hit the Arctic Ocean closeby on this faultline, on April 13, 2014, north of Franz Josef Land.

Earthquakes at this location are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.




Related

- M4.5 Earthquake hits Arctic Ocean
http://arctic-news.blogspot.com/2014/04/m45-earthquake-hits-arctic-ocean.html

- Earthquakes in the Arctic Ocean
http://arctic-news.blogspot.com/2014/04/earthquakes-in-the-arctic-ocean.html

- Methane, Faults and Sea Ice
http://arctic-news.blogspot.com/2013/11/methane-faults-and-sea-ice.html

- Norwegian Sea hit by 4.6M Earthquake
http://arctic-news.blogspot.com/2013/11/norwegian-sea-hit-by-46m-earthquake.html

- Greenland Sea hit by M5.3 Earthquake
http://arctic-news.blogspot.com/2013/10/greenland-sea-hit-by-m53-earthquake.html

- Earthquake hits waters off Japan
http://arctic-news.blogspot.com/2013/10/earthquake-hits-waters-off-japan.html

- Earthquake hits Laptev Sea
http://arctic-news.blogspot.com/2013/09/earthquake-hits-laptev-sea.html

- Methane Release caused by Earthquakes
http://arctic-news.blogspot.com/2013/09/methane-release-caused-by-earthquakes.html

- Earthquake M6.7 hits Sea of Okhotsk
http://methane-hydrates.blogspot.com/2013/10/earthquake-m67-hits-sea-of-okhotsk.html

- Sea of Okhotsk
http://methane-hydrates.blogspot.com/2013/06/sea-of-okhotsk.html

- Seismic activity
http://arctic-news.blogspot.com/p/seismic-activity.html

- Climate Plan
http://climateplan.blogspot.com

Arctic Sea Ice in Steep Descent

Arctic sea ice area is in steep descent, as illustrated by the image below. Sea ice area was only smaller at this time of the year in 2007, for all years for which satellite data are available.

[ click on image to enlarge ]
Earlier this year, on March 9, 2014, Arctic sea ice area was at a record low for the time of the year. Since then, area did show some growth for a while, to the north of Scandinavia. This growth could be attributed largely to strong winds that made the sea ice spread with little or no growth in volume. The 30-day Naval Research Laboratory animation below shows recent sea ice speed and drift.


Indeed, sea ice volume in March 2014 was the 2nd lowest on record. Only March 2011 had a lower volume as discussed in a recent post. The 30-day Naval Research Laboratory animation below shows recent sea ice thickness. 



Low sea ice volume and area jointly suggest there could be a total collapse of the sea ice later this year, in line with observation-based non-linear trends. For years, this blog has warned that observation-based projections point at Arctic sea ice disappearance within years, with dire consequences for the Arctic and for the world at large.

As said, winds are responsible for much of sea ice variability, and winds could either slow down or speed up such a collapse. On this point, it's good to remember what Prof. Peter Wadhams said in 2012:
". . apart from melting, strong winds can also influence sea ice extent, as happened in 2007 when much ice was driven across the Arctic Ocean by southerly winds. The fact that this occurred can only lead us to conclude that this could happen again. Natural variability offers no reason to rule out such a collapse, since natural variability works both ways, it could bring about such a collapse either earlier or later than models indicate.

In fact, the thinner the sea ice gets, the more likely an early collapse is to occur. It is accepted science that global warming will increase the intensity of extreme weather events, so more heavy winds and more intense storms can be expected to increasingly break up the remaining ice, both mechanically and by enhancing ocean heat transfer to the under-ice surface."
The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.

In shallow waters, heat can more easily reach the bottom of the sea. In 2007, strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, found a 2011 study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.

Another study found that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

Such warming would come on top of ever-warmer water that is carried by the Gulf Stream into the Arctic Ocean and that has already been blamed for large methane releases from the seafloor of the Arctic Ocean last year.

The prospect of an El NiƱo event, as discussed in an earlier post, makes the situation even more dire.

The consequences of sea ice collapse will be devastating, as all the heat that previously went into transforming ice into water will be asbsorbed by even darker water, from where less sunlight will be reflected back into space. The danger is that further warming of the Arctic Ocean will trigger massive methane releases that could lead to extinction at massive sclae, including extinction of humans.

Hopefully, more people will realize the urgency of the situation and support calls for comprehensive and effective action as discussed at the Climate Plan blog.



Links

- March 2014 Arctic Sea Ice Volume 2nd Lowest On Record
http://arctic-news.blogspot.com/2014/04/march-2014-arctic-sea-ice-volume-2nd-lowest-on-record.html

- Supplementary Evidence by Professor Peter Wadhams
http://arctic-news.blogspot.com/2012/04/supplementary-evidence-by-prof-peter.html

- Has the Descent begun?
http://arctic-news.blogspot.com/2014/03/has-the-descent-begun.html

- Nea-term Human Extinction
http://arctic-news.blogspot.com/2014/04/near-term-human-extinction.html

- Climate Plan blog
http://climateplan.blogspot.com


Cara Terbaik Mendapatkan Google Adsense Lewat Blogger

Cara Terbaik Mendapatkan Google Adsense Lewat Blogger - Saya pernah berjanji akan membagikan kepada kawan-kawan bagaimana Mendapatkan Google Adsense. Hal ini saya sampaikan lewat postingan saya beberapa waktu yang lalu. (Baca Terimakasih Kepada Google Adsense).

Cara Terbaik Mendapatkan Google Adsense Lewat Blogger

Anda tentu tahu apa itu Google Adsense bukan. Karena postinngan sederhana ini diperuntukkan bagi yang sudah paham (meski hanya sedikit mengerti) tentang Google Adsense. Tapi jangan khawatir, Bos Tutorial mencoba mejelaskan sedikit mengenai Google Adsense.
Google Adsense adalah salah satu program periklanan yang diselenggarakan oleh Google dan diterbitkan di media-media internet (blog/website). Blog atau Website akan diberikan kesempatan sebagai mitra kerja (publisher) oleh Google. Sebagai mitra Google, blog atau website tersebut haruslah mendapat persetujuan terlebih dahulu dan mengikuti aturan-aturan yang ditetapkan oleh Google. Untuk mengetahui lebih lanjut mengenai Google Adsense bisa anda baca Pengertian Google AdSense dan Cara Kerjanya.

Sebelum kita melangkah lebih jauh, mari kita simak dulu beberapa hal di bawah ini. Memperoleh Google Adsense atau biasa disebut GA ada 2 cara.

1. Melalui situs dengan domain sendiri.
Apabila anda sudah memiliki domain sendiri, seperti dotcom, dotnet dotwebid dan lain sejenisnya, anda bisa langsung mendaftarkannya langsung melalui email google anda. Caranya:
  • Memiliki email yang baru dan belum pernah didaftarkan ke GA (bukan email yang ditolak / masih proses persetujuan).
  • Masuk ke situs GA, https://www.google.com/adsense
  • Mulailahlah untuk mengisi formulir yang disediakan.
  • Apabila sukses, tunggu saja selanjutnya apakah diterima atau tidak.
2. Melalui Afiliasi (kerja sama dengan pihak ketiga).
Maksudnya disini adalah kita selaku pemilik situs atau blog, berafiliasi (bekerjasama) dengan situs-situs yang bisa menjadi mitra kita dalam memperoleh GA. Disini posisi kita adalah sebagai orang ketiga. Kelebihan ikut dalam sistim ini adalah gampang mendapatkan akun GA. Sementara kelemahnnya adalah dimana penghasilan kita tentunya tidak utuh (dibagi 2 dengan pihak afiliasi), dan sewaktu-waktu akun GA kita pun bisa di bekukan (banned). Tapi cara ini beberapa waktu yang lalu, mendapatkan GA melalui Afiliasi sepertinya Google sudah meniadakannya.

Contohnya adalah docstoc.com. Dulu saya pernah mendaftarkan GA melalui docstoc.com. Tidak sampai 1 hari akun GA langsung di terima. Namun, belum ada 1 bulan akun GA saya langsung kena banned (alasannya saya tidak tahu hehehe... padahal penghasilannya sudah lumayan). Saya tidak tahu apakah sampai sekarang mendapatkan GA lewat docstoc.com masih bisa atau tidak. Karena saya sendiri tidak pernah lagi mencobanya.

Blogger salah satu afiliasi yang bisa mendapatkan GA. Mungkin barangkali karena Blogger adalah milik Google sendiri sehingga sistim afiliasi bersama blogger masih berlaku sampai sekarang.

Cara Terbaik Mendapatkan Google Adsense Lewat Blogger
Cara ini hanya bisa dilakukan apabila kita benar-benar memiliki blog dari blogger (tentunya demikian bukan).
  1. Usahakan akun email blog yang anda punya saat ini belum pernah terdaftar atau ditolak menjadi mitra GA.
  2. Apabila sudah pernah didaftar dan ditolak, alternatif lainnya adlah buatlah akum email gmail yang baru. (Email baru harus anda persiapkan)
  3. Masuklah eleman Penghasilan (Adsense) pada dasbor blog anda.
  4. Apabila elemen Penghasilan (Adsense) tersebut tidak ada, coba masuk elemen Setelan. Lalu Pilih Bahasa dan Pemformatan. Selanjutnya ganti Bahasa Indonesia menjadi Inggris (Amerika Serikat) - English (United State), lalu Simpan. (Lihat gambar di bawah ini).
    Cara Terbaik Mendapatkan Google Adsense Lewat Blogger
  5. Kembali ke Dasbor Blog anda dan lihat apakah Elemen Penghasilan (Adsense) sudah muncu atau belum. (Biasanya akan muncul kok, kalo gak muncul ulang lagi aja yah...)
  6. Apabila langkah no 4 itu sudah anda lakukan maka lakukan langkah no 3.
  7. Setelah anda mendaftarkan Blog anda ke GA, maka akan muncul pilihan apakah anda akan memilih akun google yang ada atau buat akun baru. Pilih saja Akun google yang sudah ada.
  8. Apabila akun email blog anda belum pernah didaftarkan ke GA maka akan langsung diarahkan ke link GA. Tetapi apabila pernah ditolak, akan ada pilihan lagi, mau menggunakan email google yang lain atau buat baru.
  9. Pilih saja menggunakan email google yang lain. Selanjutnya, keluarlah dari akun blog anda dan masukkan akun gmail baru dan passwordnya. Lalu isilah formulir yang telah disediakan.
  10. Setelah selesai, dan sukses mendaftar, kembalilah ke Blogger. ke akun blog anda yang awal. Lihat perubahan pada elemen Penghasilan (Adsense) blog anda, dan ada pesan "Akun GA anda dalam antrian Persetujuan". Tunggu saja sampai ada. Atau lihat inbox email yang telah anda daftarkan apakah ada balasan yang membahagiakan atau tidak. Biasanya 24 jam jawaban sudah ada.
  11. Selesai.
Langkah di atas adalah Cara Teknisnya. Syarat utamanya adalah:
  1. Buatlah Blog sedemikian rupa original dan disukai oleh Google Adsense (bukan konten tanda kutip yah..). Dan sesuai aturan yang berlaku dari GA.
  2. Usahakan isi postingan sudah di atas 20 postingan.
  3. Alangkah baiknya blog sudah berumur (bisa jadi berumur 3 bulan ke atas), kalo blog anda baru, coba aja daftar siapa tahu diterima.
  4. Tampilan blog usahakan isi blog anda. Jangan masukkan link-link luar. Misalnya tampilan blog berisi: Arsip blog, Popular Post, Artikel terkini, Label / Kategori. Karena GA senang melihat blog yang memberikan tampilan seperti itu.
  5. Jangan ada iklan apa saja di dalam blog anda ketika mendaftarkan blog ke GA.
  6. Soal template tidak masalah.
  7. Berdoalah agar diterima.
Masih belum paham, atau tidak ngerti sama sekali mengenai postingan ini? Cobalah baca pelan-pelan yah. Dan mainkan nalar anda. Oh iya, ini hanya pengalaman dan bukan ilmu pasti. Kawan-kawan tentu punya pengalaman tersendiri. Demikianah catatan kecil mengenai Cara Terbaik Mendapatkan Google Adsense Lewat Blogger. Selamat mencoba dan salam sukses. [Bos Tutorial].

Memilih Hosting File Gambar Terpercaya Untuk Mendapatkan Uang

Memilih Hosting File Gambar Terpercaya Untuk Mendapatkan Uang - Tentunya anda masih ingat tulisan Bos Tutorial tentang "Mendapatkan Penghasilan dari Upload Foto dan File dari Situs Hosting Data" (Lebih jelasnya silahkan anda baca disini). Postingan kali ini pun berhubungan erat dengan tulisan tersebut. Mari simak lebih jauh di bawah ini.

Memilih Hosting File Gambar Terpercaya Untuk Mendapatkan Uang

Tulisan ini merupakan pengalaman sendiri oleh Bos Tutorial. Oleh karena itu, saya memberanikan diri untuk berbagi sedikit pengalaman. Mungkin saja berguna dan bermanfaat bagi kita semua.

Memang diakui bahwa situs-situs penyedia penyimpanan file gambar (biasa disebut Hosting File) banyak kita temui di internet. Dari yang hanya sekedar numpang menyimpan file saja tanpa mendapatkan penghasilan sampai dengan yang memberikan bayaran (penghasilan) kepada kita. Semuanya bertujuan agar blog bisa cepat loadingnya. Contohnya nih, coba buka sebuah blog yang file-file gambarnya terintegrasi dengan blog (file gambar langsung disimpan di blog) dengan blog yang memanfaatkan hosting file. Tentunya loading blog akan lebih cepat dengan menggunakan hosting file. Itulah salah satu keuntungan yang kita peroleh ketika memanfaatkan hosting file.

Namun, ada yang harus kita perhatikan daam memanfaatkan hosting file gambar tersebut. Apakah situs hosting file itu terintegrasi gak dengan blogger. Ini juga perlu kita jaga, karena bisa-bisa blog kita dianggap SPAM. Selanjutnya mari kita lihat Hosting File apa yang blog ini sarankan dan bisa digunakan sebagai mitra dan yang memberikan uang tambahan bagi kita.

Memilih Hosting File Gambar Terpercaya Untuk Mendapatkan Uang

Hosting File Gambar Terpercaya Memberikan Uang Tambahan
Ada 2 yang situs Hosting File yang saat ini Bos Tutorial gunakan sebagai tempat penyimpanan File-File Gambar dan tentunya memberikan penghasilan tambahan.

1. ImageTwist

Dalam situs imagetwist disebutkan seperti di bawah ini:
Benefits
  • We Pay Up to $4.50 For Each 1000 Image Views.
  • Minimum Payment only $4.00.
  • We Pay 10% earnings of your each referral for lifetime.
  • No Hidden Rules To Hold Your Payments.
  • Images Of Any Size Qualify To Earn Points.
  • We Will Pay Your Payment Fees. You Will Receive The Money You Earned.
  • People All Over World Qualify For Earning Program.

Saya simpulkan saja, setiap gambar yang disimpan di imagetwist 1000 view maka akan dibayar 4,5 dolar. Dan akan dibayarkan sebesar minimal 4 dolar setiap kita melakukan penarikan penghasilan. Disamping itu, bila anda memiliki referral, akan dibayarkan 10% dari penghasilan referral kita itu selama-lamanya. Maksudnya disini adaah ketika kita mengajak teman untuk bergabung dengan imagetwist melalui link yang kita kasih, maka penghasilan teman tadi, 10% dari penghasilannya (tanpa mengurangi penghasilan teman kita) akan menjadi penghasilan kita.

Sistem pembayaran
Kita atau para pengguna situs Imagetwist akan dibayar melalui Payza, Webmoney, Paxum dan Bank. Semuanya akan dilakukan pembayaran ketika kita menariknya. Sistimnya semua tergantung anda mau pilih yang mana.

Bagaimana, tertarik menggunakan imagetwist? Siahkan bergabung. http://imagetwist.com/p/under23thn (Copy Linknya yah)

2. IMGCHILI

Kinerja situs hosting file gambar yang satu ini hampir sama dengan di atas. Tidak ada perbedaan yang signifikan.

Daam situs imgchili di tulis:
"Welcome to ImgChili! While ImgChili is free to use, you can earn up to $4.2/ 1000 views."

Disini situs imgchili akan membyar kita sebesar 4,2 dolar dalam 1000 view file gambar yang kita simpan disana.

Sistem Pembayaran:
Anda bisa memilih bagaimana menarik uang yang kita dapatkan dari Imgchili. Seperti melalui PAYPAL. Saya sarankan menggunakan Paypal karena akan dibayarkan langsung ke akun paypal anda tanpa anda melakukan penarikan. Asal... mimimal pembayaran sudah tercapai.

Sistim Referral sepertinya tidak ada dalam situs Imgchili ini. So... penghasilan hanya didapatkan ketika banyak yang view gambar yang kita simpan disana.

Tertarik dan mau menggunakannya? Langsung saja kunjungi situsnya di http://imgchili.net/

Sistem Kerja
Sistem kerjanya tidaklah susah. Anda dan saya hanya mengupload Gambar pada kedua situs tersebut, setelah sukses meng-uploadnya, kita tinggal mengambil (menyalin) link file gambar tersebut dan memasukkannya ke dalam blog kita. Semuanya sudah disediakan kok.

Okay kawan Bos Tutorial, hanya kedua situs tersbut yang bisa saya sarankan sebagai Hosting File Gambar Terpercaya Untuk Mendapatkan Uang. Bila ada yang lain, mari silahkan berbagi pengalaman. Selamat mencoba dan salam sukses. [Bos Tutorial]

Near-Term Human Extinction

Global Warming and Feedbacks

Is there a mechanism that could make humanity go extinct in the not-too-distant future, i.e. within a handful of decades?

Most people will be aware that emissions due to human activity are causing global warming, as illustrated by the arrow marked 1 in the image on the left. Global warming can cause changes to the land, to vegetation and to the weather. This can result in wildfires that can in turn cause emissions, thus closing the loop and forming a self-reinforcing cycle that progressively makes things worse.

Furthermore, less forests and soil carbon also constitute a decrease in carbon sinks, resulting in carbon that would otherwise have been absorbed by such sinks to instead remain in the atmosphere, thus causing more global warming, as illustrated by the additional downward arrow in the image on the right. In conclusion, there are a number of processes at work that can all reinforce the impact of global warming.

Emissions can also contribute more directly to land degradation, to changes in vegetation and to more extreme weather, as indicated by the additional arrow pointing upward in the image on the right. A recent study by Yuan Wang et al. found that aerosols formed by human activities from fast-growing Asian economies can cause more extreme weather, making storms along the Pacific storm track deeper, stronger, and more intense, while increasing precipitation and poleward heat transport.

Accelerated Warming in the Arctic

Similar developments appear to be taking place over the North Atlantic. Huge pollution clouds from North America are moving over the North Atlantic as the Earth spins. In addition, the Gulf Stream carries ever warmer water into the Arctic Ocean. As the image below shows, sea surface temperature anomalies at the highest end of the scale (8 degrees Celsius) are visible off the coast of North America, streching out all the way into the Arctic Ocean.


As said, feedbacks as are making the situation progressively worse. Feedback loops are causing warming in the Arctic to accelerate. Warming in the Arctic is accelerating with the demise of the snow and ice cover in the Arctic, and this is only feedback #1 out out many feedbacks that are hitting the Arctic, as described in an earlier post. As the temperature difference between the equator and the Arctic decreases, the Jet Stream is changing, making it easier for cold air to move out of the Arctic and for warm air from lower latitudes to move in (feedback #10).


Abrupt Climate Change leading to Extinction at Massive Scale

The danger is that, as temperatures over the Arctic Ocean warm up further and as the Gulf Stream carries ever warmer water into the Arctic Ocean, large quantitities of methane will erupt abruptly from the seafloor of the Arctic Ocean, adding a third kind of warming, runaway warming resulting in abrupt climate change, and leading to mass death, destruction and extiction of species including humans.

Persistence of such a progression makes it inevitable that the rest of Earth will follow the huge temperature rises in the Arctic. Massive wildfires will first ignite across higher latitudes, adding further greenhouse gas emissions and causing large deposits of soot on the remaining snow and ice on Earth, with a huge veil of methane eventually spreading around the globe. The poster below, from an earlier post, illustrates the danger.

[ click on image to enlarge - note that this is a 1.8 MB file that may take some time to fully load ]
Views by Contributors

How likely is it that the above mechanism will cause human extinction within the next few decades? What views do the various contributors to the Arctic-news blog have on this?

Guy McPherson has long argued that, given the strengths of the combined feedbacks and given the lack of political will to take action, near-term human extinction is virtually inevitable.

In the video below, Paul Beckwith responds to the question: Can climate change cause human extinction?


Further contributors are invited to have their views added to this post as well. While many contributors may largely share Paul Beckwith's comments, it's important to highlight that contributors each have their own views, and this extends to their preference for a specific plan of action.

Geo-engineering

One of the more controversial issues is the use of geo-engineering. Guy McPherson doesn't believe geo-engineering will be successful. In the video below, Paul Beckwith gives his (more positive) views on this.


I must admit that the lack of political will to act is rather depressing, especially given the huge challenges ahead. So, I can understand that this can make some of us pessimistic at times. Nonetheless, I am an optimist at heart and I am convinced that we can get it right by giving more support to a Climate Plan that is both comprehensive and effective, as discussed at ClimatePlan.blogspot.com





M4.5 Earthquake hits Arctic Ocean

An earthquake with a magnitude of 4.5 on the Richter scale hit the Arctic Ocean on April 13, 2014, at 02:12:19 UTC at a depth of 10.00 km (6.21 mi).


The epicenter of the quake is located right on the faultline that crosses the Arctic Ocean, at 86.687°N 45.393°E, some 800 km north of Franz Josef Land.

Earthquakes at this location are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.




Related

- Earthquakes in the Arctic Ocean
http://arctic-news.blogspot.com/2014/04/earthquakes-in-the-arctic-ocean.html

- Methane, Faults and Sea Ice
http://arctic-news.blogspot.com/2013/11/methane-faults-and-sea-ice.html

- Norwegian Sea hit by 4.6M Earthquake
http://arctic-news.blogspot.com/2013/11/norwegian-sea-hit-by-46m-earthquake.html

- Greenland Sea hit by M5.3 Earthquake
http://arctic-news.blogspot.com/2013/10/greenland-sea-hit-by-m53-earthquake.html

- Earthquake hits waters off Japan
http://arctic-news.blogspot.com/2013/10/earthquake-hits-waters-off-japan.html

- Earthquake hits Laptev Sea
http://arctic-news.blogspot.com/2013/09/earthquake-hits-laptev-sea.html

- Methane Release caused by Earthquakes
http://arctic-news.blogspot.com/2013/09/methane-release-caused-by-earthquakes.html

- Earthquake M6.7 hits Sea of Okhotsk
http://methane-hydrates.blogspot.com/2013/10/earthquake-m67-hits-sea-of-okhotsk.html

- Sea of Okhotsk
http://methane-hydrates.blogspot.com/2013/06/sea-of-okhotsk.html

- Seismic activity
http://arctic-news.blogspot.com/p/seismic-activity.html

- Climate Plan
http://climateplan.blogspot.com



Methane buildup in the atmosphere

Levels of carbon dioxide (CO2) in the atmosphere are now firmly above the 400 parts per million (ppm) level, as illustrated by the graph below, from keelingcurve.ucsd.edu.
As above graph shows, levels of CO2 go up and down with the seasons. Even higher levels are expected to be reached in May 2014. Importantly, 400 ppm is 143% its pre-industrial peak levels of 280 ppm.

Levels of methane (CH4) in the atmosphere are rising even faster. According to IPCC AR5, methane levels were 1798 ppb in 2010 and 1803 ppb for 2011. A graph included in an earlier post shows historic levels of CH4, CO2 and N2O levels, highlighting methane's steep rise (now some 250% its pre-industrial level). The graph below, based on a plot by NOAA, shows the rise of methane over the past few decades and also shows that methane levels similarly go up and down with the seasons.

Globally, IPCC/NOAA figures suggest that abundance of methane in the atmosphere did reach 1814 ppb in 2013 and is rising with some 5 to 6 ppb annually. IASI data show that - at the hight of the northern summer, in August 2013 - mean methane levels rose strongly, to levels well above 1800 ppb, as also discussed in posts such as this one.

Next to seasonal variations, methane levels also differ depending on altitude. Often, when mean methane values are given, readings at 14,383 feet altitude are used, as methane typically reaches its highest levels at this altitude.

The image on the right compares methane levels for 2013 and 2014 at this altitude over six recent days, with a.m readings and p.m. readings for each day.

Around this time of year in 2013, as the graph shows, methane levels went through the 1800 ppb mark. The same thing occurred this year, while levels have meanwhile increased with a few ppb, so at first glance methane's rise appears to continue as anticipated by the IPCC.

While the above is very worrying, the situation may be even more dire than this. The graph below compares methane levels in 2013 and in 2014, averaged over the same six-day period (April 5 through to April 10) and at six different altitudes.

Above image indicates that, while the difference between 2013 and 2014 at lower altitudes (8,367 feet and 14,383 feet) may seem relatively small, increases at higher altitudes may be much stronger. In other words, rather than rising in a similar way across all altitudes, methane may in fact be building up much more strongly at higher altitudes.

This frightening possibility was raised a few times at this blog, such as in the altitude analysis in January 2014 and in the post Quantifying Arctic Methane, which noted that IPCC-estimates of global methane levels may rely too much on low-altitude data collected over the past few decades. Indeed, the total methane burden may already be rising much more rapidly than the IPCC is anticipating, also because methane is rising in the atmosphere, increasing the burden especially at higher altitudes, as evidenced by increasing occurence of noctilucent clouds.

The above analysis uses a limited dataset, just like the previous one, but if verified by further analysis, it could be that a dramatic rise in the presence of methane in the atmosphere is occuring without showing up at lower altitudes. This could also explain how earlier releases of methane from hydrates could have been ignored by many, i.e. relatively small increases in methane levels at relatively low altitudes may have given a false reassurance that such releases were not adding much methane to the atmosphere. Further analysis, comparing satellite data at different altitudes over the years, could give more clarity on these points.






Terimakasih Kepada Google Adsense

Terimakasih Kepada Google Adsense - Pada kesempatan kali ini Bos Tutorial mengucapkan Terimakasih Kepada Google Adsense. Alasan saya mengucapkan hal tersebut, tentunya karena diterimannya kembali blog ini sebagai mitra untuk menampilkan iklan terbaik dari Google Adsense.

Terimakasih Kepada Google Adsense

Kenapa Menggunakan Google Adsense
Salah satu membuktikan bahwa sebuah blog layak dimata Google adalah bekerjasama dengan Google. Adapun kerjasama tersebut adalah dengan menampilkan Iklan dari Google itu sendiri. Iklan Google biasa disebut Google Adsense. Blog yang belum bisa menampilkan Google Adsense, jangan berkecil hati, bersabar dan terus bersabar, tiba waktunya bila blog anda benar-benar sesuai dengan aturan dari Google, maka blog anda akan layak menjadi mitra terbaik dari Google. yang penting tetap berusaha dan semangat.

Bagi sebagian blogger mungkin atau hampir belum mengetahui apa itu Google Adsense, blog ini sudah pernah menampilkan apa itu Google Adsense. Anda bisa lihat atau baca kembali mengenai Google Adsense lebih jauh. Silahkan anda kunjungi disini. (Apa itu Google Adsense)

Kalau Bukan Google Adsense
Tentunya masih banyak situs penyedia pemasangan iklan di dalam blog. Meskipun demikian, yang terbaik selalu Google Adsense. Oleh karena itu berusahalah membuat konten blog sebagus mungkin dan sesuai dengan aturan yang Google terapkan.

Bagaimana bila tanpa Google Adsense
Tidak masalah bila tanpa Google Adsense. Yang terpenting adalah membuat blog tanpa menyalahi aturan hukum yang berlaku. Baik itu dari Google sendiri maupun hukum di negara kita. Yang jelas, selalu memberikan informasi yang menarik dan layak untuk di baca.

Cara Mendapatkan Google Adsense
Untuk memperoleh Google Adsense tidaklah mudah. Namun tidak susah juga. Semuanya diperlukan keseriusan kita dalam mengelola sebuag blog. Oh iya mengenai hal ini, nanti kita akan bahas lebih jauh.

Demikianlah ucapan Terimakasih Kepada Google Adsense, semoga tidak kena banned lagi deh... hehehehe. Salam Blogger. Salam Sukses. [Bos Tutorial]

March 2014 Arctic Sea Ice Volume 2nd lowest on Record

The March 2014 Arctic sea ice volume, as calculated by the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) at the Polar Science Center, was the 2nd lowest on record at 21.818 km³. Only March 2011 had a lower volume, at 21.421 km³, as illustrated by the graph below, by Wipneus.
Another way of depicting the continued fall of the sea ice volume is the Arctic Death Spiral below, by Andy Lee Robinson.

This puts the sea ice in a very weak position. This month, the sea ice will reach its highest volume, which may well be the lowest volume on record for April. The Naval Reserach Laboratory 30-day animation below shows recent sea ice thickness.


The lowest sea ice volume for 2014 is expected to be reached in September, and - given the shape the ice is in now - will likely be one of the lowest minima on record. In fact, there is a chance that there will be no ice left whatsoever later this year. As illustrated by the image below, again by Wipneus, an exponential curve based on annual minima from 1979 points at zero ice volume end 2016, with the lower limit of the 95% confidence interval pointing at zero ice end of 2014.
Absence of sea ice will mean that a lot of more heat will be absorbed by the Arctic Ocean.

As NSIDC.org describes, sea ice reflects 50% to 70% of the incoming energy, but thick sea ice covered with snow reflects as much as 90% of the incoming solar radiation. After the snow begins to melt, and because shallow melt ponds have an albedo of approximately 0.2 to 0.4, the surface albedo drops to about 0.75. As melt ponds grow and deepen, the surface albedo can drop to 0.15. The ocean reflects only 6% of the incoming solar radiation and absorbs the rest. Furthermore, all the heat that during the melt went into transforming ice into water will - in the absence of ice - be absorbed by the ocean as well.


Such feedbacks are causing warming to accelerate in the Arctic Ocean, much of which is very shallow and thus vulnerable to warming. The Gulf Stream can be expected to keep carrying warmer water into the Arctic Ocean. Extreme weather events such as heatwaves and cyclones could make the situation a lot worse.

Warming of the Arctic Ocean threatens to destabilize huge amounts of methane held in sediments at the seafloor, in the form of free gas and hydrates. The danger is that release of methane from the seafloor of the Arctic Ocean will warm up the Arctic even further, triggering even more methane releases, as well as heatwaves, wildfires and further feedbacks, in a spiral of runaway warming that will lead to starvation, destruction and extintion at massive scale across the globe.

In conclusion, the situation is dire and calls for comprehensive and effective action, as discussed at the climate plan blog.




Permafrost thawing could accelerate global warming


"If the permafrost melts entirely, there would be 5x the amount of carbon in the atmosphere than there is now" - Jeff Chanton

Jeff Chanton, the John Widmer
Winchester Professor of
Oceanography at Florida State.
A team of researchers lead by Florida State University have found new evidence that permafrost thawing is releasing large quantities of greenhouse gases into the atmosphere via plants, which could accelerate warming trends.

The research is featured in the newest edition of the Proceedings of the National Academy of Sciences.

“We’ve known for a while now that permafrost is thawing,” said Suzanne Hodgkins, the lead author on the paper and a doctoral student in chemical oceanography at Florida State. “But what we’ve found is that the associated changes in plant community composition in the polar regions could lead to way more carbon being released into the atmosphere as methane.”

Permafrost is soil that is frozen year round and is typically located in polar regions. As the world has gotten slightly warmer, that permafrost is thawing and decomposing, which is producing increased amounts of methane.

Relative to carbon dioxide, methane has a disproportionately large global warming potential. Methane is 33 times more effective at warming the Earth on a mass basis and a century time scale relative to carbon dioxide.

Changes in plant community composition in the polar regions could lead to way more carbon being released into the atmosphere as methane

As the plants break down, they are releasing carbon into the atmosphere. And if the permafrost melts entirely, there would be five times the amount of carbon in the atmosphere than there is now, said Jeff Chanton, the John Widmer Winchester Professor of Oceanography at Florida State.

“The world is getting warmer, and the additional release of gas would only add to our problems,” he said.

Chanton and Hodgkins’ work, “Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production,” was funded by a three-year, $400,000 Department of Energy grant. They traveled to Sweden multiple times to collect soil samples for the study.

The research is a multicontinent effort with researchers from North America, Europe and Australia all contributing to the work.



References

- Permafrost thawing could accelerate global warming - Florida State University news release
http://news.fsu.edu/More-FSU-News/Permafrost-thawing-could-accelerate-global-warming

- Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production

River ice reveals new twist on Arctic melt

A new study led by Lance Lesack, a Simon Fraser University geographer and Faculty of Environment professor, has discovered unexpected climate-driven changes in the mighty Mackenzie River’s ice breakup. This discovery may help resolve the complex puzzle underlying why Arctic ice is disappearing more rapidly than expected.

Lance Lesack,
photo by Simon Fraser University
Lesack is the lead author on Local spring warming drives earlier river-ice breakup in a large Arctic delta. Published recently in Geophysical Research Letters, the study has co-authors at Wilfrid Laurier University, the University of Alberta and Memorial University.

Its goal was to understand how warming global temperatures and the intensifying Arctic hydrological cycle associated with them may be driving increasing water discharges and more rapid ice breakup in the Arctic’s great rivers.

But the researchers stumbled upon an unexpected phenomenon while trying to figure out why the Mackenzie River’s annual ice breakup has been shortening even though its water discharge isn’t increasing, as in Russian rivers.

Just slightly warmer springs with unexpected snowfall declines — rather than warmer winters or increasing river discharge, as previously suspected — can drive earlier-than-expected ice breakup in great Arctic rivers.

The Mackenzie exemplifies this unexpected phenomenon. The researchers discovered this by accessing records dating back to 1958 of the river’s water levels, snow depths, air temperatures and times of ice breakup.

This finding is significant, as Arctic snow and ice systems are important climate-system components that affect the Earth’s ability to reflect solar radiation.

Mackenzie delta river, before (top) and after
(bottom, one day later) onset of dynamic ice
breakup in the central Mackenzie's delta middle
channel. Photos by Simon Fraser University.
“Our surprising finding was that spring temperatures, the period when river-ice melt occurs, had warmed by only 3.2 degrees Celsius. Yet this small change was responsible for more than 80 per cent of the variation in the earlier ice breakups, whereas winter temperatures had warmed by 5.3 degrees but explained little of this variation,” says Lesack.

“This is a strong response in ice breakup for a relatively modest degree of warming, but further investigation showed that by winter’s end snow depths had also declined by one third over this period. The lesser snow depths mean less solar energy is needed to drive ice breakup.”

Lesack says this is the first field-based study to uncover an important effect of reduced winter snowfall and warmer springs in the Arctic — earlier-than-expected, climate-change-related ice breakup.

“The polar regions have a disproportionate effect on planetary reflectivity because so much of these regions consist of ice and snow,” says Lesack. “Most of the planetary sea ice is in the Arctic and the Arctic landmass is also seasonally covered by extensive snow. If such ice and snow change significantly, this will affect the global climate system and would be something to worry about.”

Lesack hopes this study’s findings motivate Canadian government agencies to reconsider their moves towards reducing or eliminating ground-based monitoring programs that measure important environmental variables.

There are few long-term, ground-based snow depth records from the Arctic. This study’s findings were based on such records at Inuvik dating back to 1958. They significantly pre-dated remote sensing records that extend back only to 1980. Without this longer view into the past, this study’s co-authors would still be in the dark about the more rapid than expected Arctic melt and planetary heat-up happening.



Backgrounder:

Quotes by Lance Lesack
  • “Our work suggests that the effects of reduced winter snowfall should be further investigated in other aspects of the changing Arctic, such as the surprisingly rapid reduction in sea-ice cover and the unexpected collapses of several Canadian ice shelves.” 
  • “Our findings should also be of interest to people and industries that exist in the Arctic, where changes in the growth and decay of rivers, lakes or sea-ice may affect their daily lives. Ice roads and shipping over them depend on knowing when the ice roads can be travelled upon or when ferry crossings can be operated during open water.”
Facts:
  • Canada’s Mackenzie and several Russian rivers are among the Arctic’s gigantic waterways. The hydrological cycle is the cycling of water from the oceans to the atmosphere and back down to the continents, which the rivers then drain back to the ocean. Planetary warming hastens this cycle, which should lead to higher river discharge, more rapid river ice breakup, and ultimately more extreme weather patterns. 
  • About a third of the size of Switzerland and reaching 200 kilometres inland, the Mackenzie River delta sits at the end of Canada’s longest river and sustains 45,000 lakes. 
  • The Mackenzie River delta and other Arctic deltas are considered biological hotspots because their sites have much higher biological productivity and biodiversity than their surrounding Arctic environment. Their peak river levels enhance marine ecosystems by flushing nutrients and organic matter from vast deltas that sit at freshwater-ocean water interfaces into the ocean. 
  • In 2007 SFU geographer Lance Lesack co-authored a study that found rising water levels in the Mackenzie River delta, induced by climate-related sea-level rise, were three times higher than predicted. The authors worried that the faster-than-expected changes could have important impacts on the region’s human and animal life, and industry.
    Press release by Simon Fraser University
    http://www.sfu.ca/pamr/media-releases/2014/river-ice-reveals-new-twist-on-arctic-melt.html

    Local spring warming drives earlier river-ice breakup in a large Arctic delta
    Lance F. W. Lesack, Philip Marsh, Faye E. Hicks and Donald L. Forbes


    Like a giant elevator to the stratosphere


    Recent research results show that an atmospheric hole over the tropical West Pacific is reinforcing ozone depletion in the polar regions and could have a significant influence on the climate of the Earth.

    Potsdam, 3 April 2014. An international team of researchers headed by Potsdam scientist Dr. Markus Rex from the Alfred Wegener Institute has discovered a previously unknown atmospheric phenomenon over the South Seas. Over the tropical West Pacific there is a natural, invisible hole extending over several thousand kilometres in a layer that prevents transport of most of the natural and manmade substances into the stratosphere by virtue of its chemical composition. Like in a giant elevator, many chemical compounds emitted at the ground pass thus unfiltered through this so-called “detergent layer” of the atmosphere. Scientists call it the “OH shield”. The newly discovered phenomenon over the South Seas boosts ozone depletion in the polar regions and could have a significant influence on the future climate of the Earth – also because of rising air pollution in South East Asia.

    In tropical thunderstorms over the West Pacific air masses and
    the chemical substances they contain are quickly hurled upward
    to the edge of the stratosphere. If there are sufficient OH
    molecules in the atmosphere, the air is extensively cleaned by
    chemical transformation processes. Where OH concentrations are
    low, such as those now found in large sections of the tropical
    West Pacific, the cleaning capacity of the atmosphere is reduced.
    Photo: Markus Rex, Alfred Wegener Institute
    At first Dr. Markus Rex suspected a series of flawed measurements. In October 2009 the atmospheric physicist from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) was on board the German research vessel “Sonne” to measure trace substances in the atmosphere in the tropical West Pacific.

    Tried and tested a thousand times over, the ozone probes he sent up into the tropical sky with a research balloon every 400 kilometres reported – nothing.

    Or to be more accurate: almost nothing. The ozone concentrations in his measurements remained nearly constantly below the detection limit of approx. 10 ppbv* in the entire vertical range from the surface of the Earth to an altitude of around 15 kilometres. Normally ozone concentrations in this part of the atmosphere are three to ten times higher.

    Although low values at an altitude of around 15 kilometres were known from earlier measurements in the peripheral area of the tropical West Pacific, the complete absence of ozone at all heights was surprising. However, after a short period of doubt and various tests of the instruments it dawned on the worldwide recognised ozone specialist that he might be onto a phenomenon yet unknown to science. A few research years later and after the involvement of other colleagues came confirmation: Markus Rex and his team on board the “Sonne” had tracked down a giant natural hole over the tropical South Seas, situated in a special layer of the lower atmosphere known as the “OH shield”. The research results on the newly discovered OH minimum will be published soon in the journal “Atmospheric Chemistry and Physics”, with the Institute of Environmental Physics of the University of Bremen and other international research institutions as partners.
    Nearly all chemical substances produced by people, animals,
    plants, algae or microorganisms on the ground or in the oceans
    react quickly with OH and break down in this process. During this
    chemical self-cleaning process substances that are not easily
    water-soluble are transformed into water-soluble products and
    then washed out by precipitation. Through this mechanism OH
    molecules remove most substances from the atmosphere.
    The OH molecule is therefore also called the detergent of the
    atmosphere. Only extremely long-lived chemical compounds,
    such as methane or CFCs, also known as "ozone killers", can
    rise through the OH shield into the stratosphere.
    Graphics: Markus Rex, Alfred Wegener Institute
    “Even though the sky appears to be an extensively uniform space for most people, it is composed of chemically and physically very different layers,” Markus Rex explains the complex makeup of the atmosphere.

    The air layers near the ground contain hundreds or even thousands of chemical compounds. This is why winter and spring, mountains and sea, city and forests all have a distinct smell. The great majority of these substances are broken down into water-soluble compounds in the lower kilometres of the atmosphere and are subsequently washed out by rain.

    Since these processes require the presence of a certain chemical substance, the so called hydroxyl (=OH) radical, this part of the atmosphere is called the “OH shield”. It acts like a huge atmospheric washing machine in which OH is the detergent.

    The OH shield is part of the troposphere, as the lower part of the atmosphere is called. “Only a few, extremely long-lived compounds manage to make their way through the OH shield,” says Rex, “then they also get through the tropopause and enter the stratosphere.” Tropopause refers to the boundary layer between the troposphere and the next atmospheric layer above it, the stratosphere. Particularly substances that enter the stratosphere unfold a global impact. The reason for this is that once they have reached the stratosphere, their degradation products remain up there for many years and spread over the entire globe.

    Extremely long-lived chemical compounds find their way to the stratosphere, even where the OH shield is intact. These include methane, nitrous oxide (“laughing gas”), halons, methyl bromide and chlorofluorocarbons (CFCs), which are notorious as “ozone killers” because they play a major role in ozone depletion in the polar regions.

    Location and extent of low ozone concentrations and thus
    of the OH hole over the West Pacific. Fig. (a) shows the
    region of origin of the air in the stratosphere, Fig. (b) ozone
    sonde measurements (dots) and satellite measurements
    (coloured map) of the total amount of ozone in the
    tropospheric column of air and Fig. (c) the total amount of
    OH in the tropospheric column of air calculated with a model.
    Graphics: Markus Rex, Alfred Wegener Institute.
    After many years of research scientists now understand the complicated process of stratospheric ozone depletion very well.

    “Nevertheless measured ozone depletion rates were often quite a bit larger than theoretically calculated in our models,” Markus Rex points out a long unsolved problem of atmospheric research.

    “Through the discovery of the OH hole over the tropical West Pacific we have now presumably made a contribution to solving this puzzle.”

    And at the same time discovered a phenomenon that raises a number of new questions for climate policy.

    Researchers are now tackling these questions in a new research project funded by the EU with around 9 million euros, i.e. “StratoClim”, which is coordinated by the Alfred Wegener Institute. Within this project a new monitoring station will be established in the tropical Westpacific, together with the Institute of Environmental Physics at the University of Bremen.

    “We have to realise,” reminds the Potsdam atmospheric physicist, “that chemical compounds which enter the stratosphere always have a global impact.” Thanks to the OH hole that the researchers discovered over the tropical Pacific, greater amounts of brominated hydrocarbons can reach the stratosphere than in other parts of the world. Although their ascent takes place over the tropical West Pacific, these compounds amplify ozone depletion in the polar regions. Since scientists identified this phenomenon and took it into account in the modelling of stratospheric ozone depletion, their models have corresponded excellently with the actually measured data.

    However, it is not only brominated hydrocarbons that enter the stratosphere over the tropical West Pacific. “You can imagine this region as a giant elevator to the stratosphere,” states Markus Rex using an apt comparison. Other substances, too, rise here to a yet unknown extent while they are intercepted to a larger extent in the OH shield elsewhere on the globe. One example is sulphur dioxide, which has a significant impact on the climate.

    Sulphur particles in the stratosphere reflect sunlight and therefore act antagonistically to atmospheric greenhouse gases like CO2, which capture the heat of the sun on the Earth. To put it simply, whereas greenhouse gases in the atmosphere heat the globe, sulphur particles in the stratosphere have a cooling effect. “South East Asia is developing rapidly in economic terms,” Markus Rex explains a problem given little attention to date. “Contrary to most industrial nations, however, little has been invested in filter technology up to now. That is why sulphur dioxide emissions are increasing substantially in this region at present.”

    This is how air reaches the stratosphere. Through the rapid
    upward transport in tropical thunderstorms they reach an area
    of slow large-scale ascent and rise from there through the
    tropopause into the stratosphere over the course of weeks.
    This process is most pronounced during northern hemispheric
    winter. Model calculations show that, during this season, this
    process mainly takes place over the tropical West Pacific. Due
    to the formation of cirrus (= ice) clouds in the extremely cold
    tropical tropopause, a large portion of the water-soluble
    chemical substances is removed from the air and cannot reach
    the stratosphere. OH molecules transform water-insoluble into
    water-soluble compounds. Hence, if the concentration of OH
    molecules along the dotted transport pathways shown above
    is high only few chemical compounds make it into the
    stratosphere. Conversely, the lower the OH concentration is
    along the transport pathways, the more chemical
    compounds enter the stratosphere.
    Graphics: Yves Nowak, Alfred Wegener Institute.
    If one takes into account that sulphur dioxide may also reach the stratosphere via the OH hole over the tropical West Pacific, it quickly becomes obvious that the atmospheric elevator over the South Seas not only boosts ozone depletion, but may influence the climate of the entire Earth. In fact, the aerosol layer in the stratosphere, which is also composed of sulphur particles, seems to have become thicker in recent years. Researchers do not know yet whether there is a connection here.

    But wouldn’t it be a stroke of luck if air pollutants from South East Asia were able to mitigate climate warming? “By no means,” Markus Rex vigorously shakes his head. “The OH hole over the South Seas is above all further evidence of how complex climate processes are. And we are still a long way off from being in a position to assess the consequences of increased sulphur input into the stratosphere. Therefore, we should make every effort to understand the processes in the atmosphere as best we can and avoid any form of conscious or unconscious manipulation that would have an unknown outcome.”

    Background:

    Why is there an OH hole over the West Pacific?
    The air in the tropical West Pacific is extremely clean. Air masses in this area were transported across the expanse of the huge Pacific with the trade winds and for a long time no longer had contact with forests or other land ecosystems that produce innumerable short-lived hydrocarbons and release them into the air. Under these clean air conditions OH is formed from ozone through chemical transformation to a great degree. If there is hardly any ozone in the lower atmosphere (= troposphere), as is the case in the West Pacific, only little OH can be formed. The result is an OH hole.

    The graph shows ozone profiles measured in three different
    marine regions: the tropical Atlantic, the tropical West Pacific
    and the West Pacific outside the tropics. The red curve clearly
    shows that ozone is consistently very low up to an altitude of
    15 kilometres over the tropical West Pacific. In the other
    regions the ozone concentrations are in a range typical
    for the troposphere.
    Graphics: Markus Rex, Alfred Wegener Institute
    Ozone, in turn, forms in the lower atmosphere only if there are sufficient nitrogen oxides there. Large amounts of nitrogen oxide compounds are produced in particular by intensive lightning over land.

    However, the air masses in the tropical West Pacific were not exposed to any continental tropical storms for a very long time during their transport across the giant ocean. And the lightning activity in storms over the ocean is relatively small. At the same time the lifetime of atmospheric ozone is short due to the exceptionally warm and moist conditions in the tropical West Pacific. In this South Sea region the surface temperatures of the ocean are higher than anywhere else on our planet, which makes the air not only quite warm, but also quite moist.

    The ozone is thus quickly lost, especially directly above the water. And due to the lack of nitrogen oxide compounds little ozone is subsequently formed. Rapid vertical mixing in the convection areas that exist everywhere over the warm ocean and in which the warm air rises takes care of the rest. Finally, there is no more ozone in the entire column of air in the troposphere. And without ozone (see above) the formation of OH is suppressed.

    What impact does the OH hole over the West Pacific have?
    The illustration shows the average lifetime of sulphur dioxide
    and some brominated hydrocarbons for normal conditions
    over the tropical Atlantic and for conditions of reduced
    OH-concentrations over the tropical West Pacific.
    Graphics: Markus Rex, Alfred Wegener Institute
    The OH molecule is also called the detergent of the atmosphere. Nearly all of the thousands of different chemical substances produced by people, animals, plants, fungi, algae or microorganisms on the ground or in the oceans react quickly with OH and break down in this process. Therefore, virtually none of these substances rises into the stratosphere. In the area of the OH hole, however, a larger portion of this varied chemical mix can enter the stratosphere.

    And local emissions may unfold a global impact, especially if they make it to the stratosphere. There they spread globally and can influence the composition of the air for many years – with far-reaching consequences for ozone chemistry, aerosol formation and climate.

    Why wasn’t the OH hole discovered earlier?
    The tropical West Pacific is one of the most remote regions on our planet. That is why extensive measurements of the air composition have yet to take place in this area. There is also a considerable gap in the otherwise dense network of global ozone measurement stations here. Even in the past measurements from the peripheral sections of the now investigated region showed minimal ozone values in the area of the upper troposphere, but not the consistently low values that have now been found across the entire depth of the troposphere. The newly discovered phenomenon reveals itself in its full scope only through the measurements that were conducted to such an extensive degree for the first time and was thus not able to be grasped at all previously.

    *One part of ozone per billion by volume (ppbv) means there is one ozone molecule for every billion air molecules.



    Press release from the Alfred Wegener Institute, which conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.